Asked by George
A maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use. In a random sample of 57 microwaves that are 5 years old, 13% needed repairs. At á=0.01, can you reject the maker’s claim that no more than 10% of its microwaves need repair during the first five years of use?
Answers
Answered by
MathGuru
Null hypothesis:
Ho: p < or = .10 -->meaning: population proportion is less than or equal to .10
Alternative hypothesis:
Ha: p > .10 -->meaning: population proportion is greater than .10
Using a formula for a binomial proportion one-sample z-test with your data included, we have:
z = .13 - .10 / √[(.10)(.90)/57] -->note: .90 represents 1 - .10
Finish the calculation.
Use a z-table to find the critical or cutoff value at 0.01 for a one-tailed test (upper tail). The test is one-tailed because the alternative hypothesis is showing a specific direction (greater than).
If the z-test statistic calculated above exceeds the critical value from the z-table, reject the null. If the z-test statistic does not exceed the critical value from the z-table, do not reject the null.
I hope this will help get you started.
Ho: p < or = .10 -->meaning: population proportion is less than or equal to .10
Alternative hypothesis:
Ha: p > .10 -->meaning: population proportion is greater than .10
Using a formula for a binomial proportion one-sample z-test with your data included, we have:
z = .13 - .10 / √[(.10)(.90)/57] -->note: .90 represents 1 - .10
Finish the calculation.
Use a z-table to find the critical or cutoff value at 0.01 for a one-tailed test (upper tail). The test is one-tailed because the alternative hypothesis is showing a specific direction (greater than).
If the z-test statistic calculated above exceeds the critical value from the z-table, reject the null. If the z-test statistic does not exceed the critical value from the z-table, do not reject the null.
I hope this will help get you started.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.