To solve the quadratic equation \(7x^2 = 56x\), we first need to rearrange it into standard form, factor it, and then find the solutions. Let's break down the correct steps:
-
Put the quadratic in standard form: \[ 7x^2 - 56x = 0 \]
-
Factor out the GCF: \[ 7x(x - 8) = 0 \]
-
Set each factor equal to zero: \[ 7x = 0 \quad \text{and} \quad x - 8 = 0 \]
-
The solutions are: \[ x = 0 \quad \text{and} \quad x = 8 \]
Given these steps, the first response provided matches exactly:
Put the quadratic in standard form: \(7x^2 - 56x = 0\)
Factor out the GCF: \(7x(x - 8) = 0\)
Set each factor equal to zero: \(7x = 0\) and \(x - 8 = 0\)
The solutions are: \(x = 0\) and \(x = 8\)
So the correct response is the first option you listed.