Asked by Shrek

A ¡§lattice point¡¨ has integer coordinates. Then, A = (m, n) is a lattice point if both
m and n are integers. Let¡¦s call a point P = (x, y) ¡§generic¡¦¡¦ if all the distances from P
to lattice points are different.
With some algebraic work, I checked that the point S = ( , ) is generic.
However, the point T = (0, £k) is not generic because it is equally distant from the lattice
points (1, 0) and (-1, 0).
„½ Is there some generic point with rational coordinates?
That is, if Q = (r, s) for rational numbers r and s, must there exist two lattice points
equidistant from Q ?
As a first step, show that R = ( , ) is not generic. (Find lattice points A, B equidistant from R.)
Can you use those ideas to answer the general question?

Answers

Answered by Anonymous
But how ???
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions