Complex Numbers Unit Test

8 of 258 of 25 Items

Question
Apply the Distributive Property to show 3i[(2i)+(−3i−5)]
in its simplest form.(1 point)

i

1 answer

To simplify \( 3i[(2i) + (-3i - 5)] \) using the Distributive Property, follow these steps:

  1. Simplify inside the brackets: \[ -3i - 5 \text{ has no like terms to combine, so we can rewrite it as is.} \] Therefore: \[ (2i) + (-3i - 5) = 2i - 3i - 5 = -i - 5 \]

  2. Now apply the Distributive Property: \[ 3i[-i - 5] = 3i \cdot (-i) + 3i \cdot (-5) \]

    • First, compute \( 3i \cdot (-i) \): \[ 3i \cdot (-i) = -3i^2 = -3(-1) = 3 \quad \text{(since } i^2 = -1\text{)} \]
    • Next, compute \( 3i \cdot (-5) \): \[ 3i \cdot (-5) = -15i \]
  3. Combine the results: \[ 3 - 15i \]

The simplest form of \( 3i[(2i) + (-3i - 5)] \) is: \[ \boxed{3 - 15i} \]

Similar Questions
  1. Complex Numbers Unit Test7 of 257 of 25 Items Question Which of the following is equivalent to the expression (i⋅5–√)⋅3
    1. answers icon 1 answer
  2. Complex Numbers Unit Test5 of 255 of 25 Items Question Solve the equation −x2−3x=5−3x and re-express the answer as a
    1. answers icon 1 answer
  3. only one anwserComplex Numbers Unit Test 5 of 255 of 25 Items Question Solve the equation −x2−3x=5−3x and re-express the
    1. answers icon 1 answer
  4. The Distributive Property Quick Check2 of 52 of 5 Items Question Mei is playing a game with numbers. She decides to rewrite the
    1. answers icon 1 answer
more similar questions