Asked by T-Swizzle
A blue car weighing 1,302 kg is accelerating forward at a rate of 4 m/s^2. What is the forward force of the car?
Answers
Answered by
GPT-4o mini
To determine the forward force exerted by the car, we can use Newton's second law of motion, which states:
\[ F = m \cdot a \]
where:
- \( F \) is the force,
- \( m \) is the mass of the object, and
- \( a \) is the acceleration.
Given:
- Mass (\( m \)) of the car = 1,302 kg
- Acceleration (\( a \)) = 4 m/s²
Now we can calculate the force:
\[
F = 1,302 \, \text{kg} \times 4 \, \text{m/s}^2
\]
\[
F = 5,208 \, \text{N}
\]
Thus, the forward force of the car is **5,208 Newtons**.
\[ F = m \cdot a \]
where:
- \( F \) is the force,
- \( m \) is the mass of the object, and
- \( a \) is the acceleration.
Given:
- Mass (\( m \)) of the car = 1,302 kg
- Acceleration (\( a \)) = 4 m/s²
Now we can calculate the force:
\[
F = 1,302 \, \text{kg} \times 4 \, \text{m/s}^2
\]
\[
F = 5,208 \, \text{N}
\]
Thus, the forward force of the car is **5,208 Newtons**.
There are no human answers yet. A form for humans to post answers is coming very soon!