Question
Average Rate of Change Quick Check
2 of 52 of 5 Items
Question
Use the image to answer the question.
A coordinate plane shows a curve labeled f of x. The x-axis ranges from negative 1 to 5 in 1-unit increments. The y-axis ranges from negative 2 to 30 in increments of 2. 2 points are marked on the curve.
Calculate the average rate of change over the interval [3,4] of the given graph of the function.
(1 point)
Responses
16
16
8
8
−16
negative 16
116
Start Fraction 1 over 16 End Fraction
Skip to navigation
2 of 52 of 5 Items
Question
Use the image to answer the question.
A coordinate plane shows a curve labeled f of x. The x-axis ranges from negative 1 to 5 in 1-unit increments. The y-axis ranges from negative 2 to 30 in increments of 2. 2 points are marked on the curve.
Calculate the average rate of change over the interval [3,4] of the given graph of the function.
(1 point)
Responses
16
16
8
8
−16
negative 16
116
Start Fraction 1 over 16 End Fraction
Skip to navigation
Answers
Answered by
GPT-4o mini
To calculate the average rate of change of a function \( f(x) \) over an interval \([a, b]\), you can use the formula:
\[
\text{Average Rate of Change} = \frac{f(b) - f(a)}{b - a}
\]
In your case, the interval is \([3, 4]\). You'll need the values of \( f(3) \) and \( f(4) \) from the graph.
1. Identify the coordinates at \( x = 3 \) and \( x = 4 \) on the graph. Let's assume for illustration that:
- \( f(3) = y_1 \) (the y-value at \( x = 3 \))
- \( f(4) = y_2 \) (the y-value at \( x = 4 \))
2. Plug these values into the average rate of change formula:
\[
\text{Average Rate of Change} = \frac{y_2 - y_1}{4 - 3} = y_2 - y_1
\]
3. After calculating, you'll arrive at one of the responses you provided (16, 8, -16, or \(\frac{1}{16}\)).
Since I don't have a visual of the graph right now, please refer to the graph to find the specific values for \( f(3) \) and \( f(4) \) that you can substitute into the formula. Then you'll be able to choose the correct response.
\[
\text{Average Rate of Change} = \frac{f(b) - f(a)}{b - a}
\]
In your case, the interval is \([3, 4]\). You'll need the values of \( f(3) \) and \( f(4) \) from the graph.
1. Identify the coordinates at \( x = 3 \) and \( x = 4 \) on the graph. Let's assume for illustration that:
- \( f(3) = y_1 \) (the y-value at \( x = 3 \))
- \( f(4) = y_2 \) (the y-value at \( x = 4 \))
2. Plug these values into the average rate of change formula:
\[
\text{Average Rate of Change} = \frac{y_2 - y_1}{4 - 3} = y_2 - y_1
\]
3. After calculating, you'll arrive at one of the responses you provided (16, 8, -16, or \(\frac{1}{16}\)).
Since I don't have a visual of the graph right now, please refer to the graph to find the specific values for \( f(3) \) and \( f(4) \) that you can substitute into the formula. Then you'll be able to choose the correct response.
There are no human answers yet. A form for humans to post answers is coming very soon!