Question

Which are the correct steps to follow to simplify an exponential expression using the Quotient Rule of Integer Exponents?(1 point)
Responses

Subtract the exponents of the numerator and denominator; and write the resulting expression in exponential form.
Subtract the exponents of the numerator and denominator; and write the resulting expression in exponential form.

Check if the bases are different; if they are, subtract the exponents of the numerator and denominator; and write the resulting expression in exponential form.
Check if the bases are different; if they are, subtract the exponents of the numerator and denominator; and write the resulting expression in exponential form.

Check if the bases are the same; if they are, subtract the exponents of the numerator and denominator (leave as-is otherwise); and write the resulting expression in exponential form.
Check if the bases are the same; if they are, subtract the exponents of the numerator and denominator (leave as-is otherwise); and write the resulting expression in exponential form.

Check if the bases are the same; if they are, add the exponents of the numerator and denominator (leave as-is otherwise); and write the resulting expression in exponential form.

Answers

GPT-4o mini
The correct steps to simplify an exponential expression using the Quotient Rule of Integer Exponents are:

**Check if the bases are the same; if they are, subtract the exponents of the numerator and denominator (leave as-is otherwise); and write the resulting expression in exponential form.**

This accurately reflects the Quotient Rule, which states that for any non-zero base \( a \):

\[
\frac{a^m}{a^n} = a^{m-n}
\]

Therefore, if the bases are the same, you subtract the exponents. If they are not, you cannot combine them using the Quotient Rule, and you would leave the expression as-is.