Asked by Kelly
conic sections
prove that the line x-2y+10=0 touches the ellipse 9x^2+64y^2=576
show that the equation of the normal to the ellipse x^2/a^2 + y^2/b^2 = 1 at the point (a cos theta, b sin theta ) is ax sin theta - by cos theta - (a^2-b^2) sin theta cos theta =0
prove that the line x-2y+10=0 touches the ellipse 9x^2+64y^2=576
show that the equation of the normal to the ellipse x^2/a^2 + y^2/b^2 = 1 at the point (a cos theta, b sin theta ) is ax sin theta - by cos theta - (a^2-b^2) sin theta cos theta =0
Answers
Answered by
drwls
For the first part, require that
x = 2y -10 . Then insert that value of x in the second (ellipse) equation and see if a solution exists. If it does, there is a point that satisfies both equations.
Part 2, determine the slope dy/dx of the tangent line at (x = a sin theta, y = b cos theta)
2x/a^2 + (2y/b^2) dy/dx = 0
dy/dx = -(x/y)(b/a)^2
= (tan theta)(b/a)
(theta is measured counterclockwise from the +x axis)
Knowing the slope and the given coordinates (x,y) of one point on the tangent line, the equation for the tangent line can be written.
x = 2y -10 . Then insert that value of x in the second (ellipse) equation and see if a solution exists. If it does, there is a point that satisfies both equations.
Part 2, determine the slope dy/dx of the tangent line at (x = a sin theta, y = b cos theta)
2x/a^2 + (2y/b^2) dy/dx = 0
dy/dx = -(x/y)(b/a)^2
= (tan theta)(b/a)
(theta is measured counterclockwise from the +x axis)
Knowing the slope and the given coordinates (x,y) of one point on the tangent line, the equation for the tangent line can be written.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.