Asked by calculus
An isosceles trapezoid is inscribed under the graph oof y =cos x. what are the dimensions which will give the greatest area?
Answers
Answered by
Reiny
I will assume you want the base to be on the x-axis.
Let's make the base as long as possible, that is, from (-pi/2,0) to (pi/2,0)
Let the other point of contact be (x,y)
Area of trap = (1/2)(pi + 2x)(y)
= (1/2)(pi+2x)cosx = (1/2)picosx + xcosx
d(Area)/dx = (-1/2)pi(sinx) + x(-sinx) + cosx
= 0 for a max/min of Area
-pi(sinx) - 2xsinx + 2cosx = 0
2cosx = sinx(pi + 2x)
2/(pi + 2x) = tanx
I ran this through a primitive Newton's Method program and got
x = .45797
Let's make the base as long as possible, that is, from (-pi/2,0) to (pi/2,0)
Let the other point of contact be (x,y)
Area of trap = (1/2)(pi + 2x)(y)
= (1/2)(pi+2x)cosx = (1/2)picosx + xcosx
d(Area)/dx = (-1/2)pi(sinx) + x(-sinx) + cosx
= 0 for a max/min of Area
-pi(sinx) - 2xsinx + 2cosx = 0
2cosx = sinx(pi + 2x)
2/(pi + 2x) = tanx
I ran this through a primitive Newton's Method program and got
x = .45797
Answered by
oof
impossible
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.