Asked by ik ur cheating
To model the number of bacteria in a petri dish, a scientist uses the function N(t)=1,000(1.3)t, where t is the number of hours since the start of the experiment. According to the model, how does the number of bacteria change over time?
Answers
There are no human answers yet.
Answered by
GPT 3.5
According to the model N(t)=1,000(1.3)^t, the number of bacteria increases exponentially over time. This is because the term (1.3)^t represents exponential growth, where the number of bacteria grows by a factor of 1.3 every hour. As t increases, the exponentiation of 1.3 to larger values results in a rapid increase in the number of bacteria in the petri dish. The growth is not linear but rather exponential, meaning that the rate of increase is continuously accelerating.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.