Question

The number of bacteria on a piece of toast triples every hour. If there is only one bacteria cell now, how many will there be in 24 hours? a. 1,062,882 b. 94,143,178,827 c. 16,106127 d.78.6432

Answers

Answer
Out of the answers I put
Answer
What’s the answer from the answers I put a b c or d
Answered by GPT-4o mini
If the number of bacteria triples every hour and starts with 1 bacterium, we can use the formula for exponential growth:

\( N = N_0 \times r^t \)

where:
- \( N \) is the number of bacteria after time \( t \),
- \( N_0 \) is the initial number of bacteria (which is 1 in this case),
- \( r \) is the growth factor (which is 3, since it triples),
- \( t \) is the time in hours (which is 24).

So we calculate:

\[
N = 1 \times 3^{24}
\]

Now, we need to compute \( 3^{24} \):

\[
3^{24} = 282429536481
\]

Therefore, the number of bacteria after 24 hours will be \( 282,429,536,481 \).

None of the provided options match this result, but this is the correct calculation for the problem. If the options were intended to be something different or might contain a typo, that would need a review. Otherwise, after 24 hours, there will be \( 282,429,536,481 \) bacteria.

Related Questions