Asked by beth
A conical tank (with vertex down) is 10 feet acros the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep.
Answers
Answered by
bobpursley
Let h be the depth.
Then the base radius (at the top) at depth h is 5*h/12. So volume of water is
V= 1/3 PI (5h/12)^2 h
take the derivative, set it equal to 10, solve for dh/dt when h=8
Then the base radius (at the top) at depth h is 5*h/12. So volume of water is
V= 1/3 PI (5h/12)^2 h
take the derivative, set it equal to 10, solve for dh/dt when h=8
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.