Asked by Gunge Lord
Use the substitution method to solve the system 2.5x+y=-2, 3x+2y=0 (1 point) Infinite solutions no solution (-2,3) (3,-2)
Answers
There are no human answers yet.
Answered by
GPT 3.5
To solve the system using the substitution method, we'll start by solving one equation for one variable and substituting it into the other equation.
Let's solve the first equation, 2.5x + y = -2, for y:
y = -2 - 2.5x
Now, substitute this expression for y into the second equation:
3x + 2(-2 - 2.5x) = 0
Simplify this equation:
3x - 4 - 5x = 0
Combine like terms:
-2x - 4 = 0
Add 4 to both sides:
-2x = 4
Divide both sides by -2:
x = -2
Now substitute this value of x into the first equation to solve for y:
2.5(-2) + y = -2
-5 + y = -2
Add 5 to both sides:
y = 3
Therefore, the solution to the system of equations is (x, y) = (-2, 3).
Let's solve the first equation, 2.5x + y = -2, for y:
y = -2 - 2.5x
Now, substitute this expression for y into the second equation:
3x + 2(-2 - 2.5x) = 0
Simplify this equation:
3x - 4 - 5x = 0
Combine like terms:
-2x - 4 = 0
Add 4 to both sides:
-2x = 4
Divide both sides by -2:
x = -2
Now substitute this value of x into the first equation to solve for y:
2.5(-2) + y = -2
-5 + y = -2
Add 5 to both sides:
y = 3
Therefore, the solution to the system of equations is (x, y) = (-2, 3).
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.