Find all the zeroes of the equation. 27x^2−324=−x^4

1 answer

To find the zeroes of the equation 27x^2 - 324 = -x^4, we first move all the terms to one side to set the equation equal to zero:

x^4 + 27x^2 - 324 = 0

Next, we can factor the equation to simplify it. Notice that this equation is in the form of a quadratic equation with x^2 in the place of the quadratic term. Let's substitute y = x^2:

y^2 + 27y - 324 = 0

Now, we can factor this quadratic equation:

(y + 36)(y - 9) = 0

Setting each factor equal to zero:

y + 36 = 0 or y - 9 = 0

Solving for y:

y = -36 or y = 9

Since we let y = x^2, we need to solve for x:

x^2 = -36 or x^2 = 9

Taking the square root of both sides:

x = ± √(-36) or x = ± √9

x = ± 6i or x = ± 3

Therefore, the zeroes of the equation are x = ± 6i and x = ± 3.
Similar Questions
  1. Find the zeroes of the functiony=3x^3-3x So I factored that to y=3x(x^2-1) but am not sure about the zeroes. I know that 0 and 1
    1. answers icon 1 answer
  2. If a number ends in zeroes, the zeroes are called terminal zeroes.For example, 520,000 has four terminal zeroes, but 502,000 has
    1. answers icon 1 answer
    1. answers icon 1 answer
  3. find the zeroes and state the multiplicity of multiple zeroesy=(x+1)^2 (x-1) (x-2) I know that x=-1 x=1 x=2 I don't know how to
    1. answers icon 1 answer
more similar questions