Asked by Mitch
(Growth of Cells) Suppose that after t hrs, there are p (t) cells present in a culture, where P(t) = 5000e*^2t
a) How many cells were present initially?
b) Give a differential equation satisfied by P(t)
c) When will the population double?
d) When will 20,000 cells be present?
a) How many cells were present initially?
b) Give a differential equation satisfied by P(t)
c) When will the population double?
d) When will 20,000 cells be present?
Answers
Answered by
Marth
a. "initially" means time = 0
P(0) = 5000e^2(0) = 5000e^0 = 5000
b. P(t) = 5000*e^(2t)
[d/du]e^u = e^u du
Therefore, P'(t) = 5000*2e^(2t)
P'(t) = 10000e^(2t)
c. Set e^(2t) = 2.
2t = ln2
t = (ln2)/2
The population will double every (ln2)/2 hours.
d. set P = 20000 and solve for t.
20000 = 5000e^(2t)
4 = e^(2t)
ln4 = 2t
2ln2 = 2t
ln2 = t
P(0) = 5000e^2(0) = 5000e^0 = 5000
b. P(t) = 5000*e^(2t)
[d/du]e^u = e^u du
Therefore, P'(t) = 5000*2e^(2t)
P'(t) = 10000e^(2t)
c. Set e^(2t) = 2.
2t = ln2
t = (ln2)/2
The population will double every (ln2)/2 hours.
d. set P = 20000 and solve for t.
20000 = 5000e^(2t)
4 = e^(2t)
ln4 = 2t
2ln2 = 2t
ln2 = t
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.