Asked by Karly
At one university, the students are given z-scores at the end of each semester instead of traditional GPA's. The mean and standard deviation of all the student' culmulative GPA's, on which the z-scores are based, are 2.7 and .5 respectively.
i understand how to translate the pas given the z-scores; however, i don't understand this question:
the president of the university wishes to graduate the top 16% of students with cum laude honors and the top 2.5% with summa cum laude honors. where should the limits be set in terms of z-scores [approx]? in terms of GPAs? what assumption if any did you make about the distribution of the GPAs at the university?
am i supposed to assume that there's a normal distribution? i don't understand how to get the answers to this question.
thank you.
i understand how to translate the pas given the z-scores; however, i don't understand this question:
the president of the university wishes to graduate the top 16% of students with cum laude honors and the top 2.5% with summa cum laude honors. where should the limits be set in terms of z-scores [approx]? in terms of GPAs? what assumption if any did you make about the distribution of the GPAs at the university?
am i supposed to assume that there's a normal distribution? i don't understand how to get the answers to this question.
thank you.
Answers
Answered by
Karly
oh wait...should use the 97.5 percentile to get the answer to the 2.5% top students?? because they wouldn't have negative z-scores, right?
Answered by
Damon
Yes, assume a normal distribution.
100 - 2.5 = 97.5%
so any F(z) > .975 gets Summa
My table of z versus F(z) is pretty crude.
for example it has entries
z = 1.9 when F(z) = .971
z = 2.0 when F(z) = .977
We know that somewhere between z = 1.9 and z = 2.0, F (z) = .975
Say maybe any z over 1.95 gets summa.
Now do the same thing for F(z) = 1-.16 = .84
find z for f(z) = .84 (z around 1.0)
any z between there and 1.95 gets cum laude
100 - 2.5 = 97.5%
so any F(z) > .975 gets Summa
My table of z versus F(z) is pretty crude.
for example it has entries
z = 1.9 when F(z) = .971
z = 2.0 when F(z) = .977
We know that somewhere between z = 1.9 and z = 2.0, F (z) = .975
Say maybe any z over 1.95 gets summa.
Now do the same thing for F(z) = 1-.16 = .84
find z for f(z) = .84 (z around 1.0)
any z between there and 1.95 gets cum laude
Answered by
Damon
Yes
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.