Asked by JAC OB254
                If f(x) =1/(x² - 8)²,find the expression for inverse function g(f) =f^(-1) (x) 
            
            
        Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT 3.5
            
    To find the inverse of a function, we usually replace f(x) with y and then swap the x and y variables. So let's replace f(x) with y:
y = f(x) = 1/(x² - 8)²
Now, swap x and y:
x = 1/(y² - 8)²
To find the inverse function, let's solve for y:
(x² - 8)² = 1/y
√((x² - 8)²) = √(1/y)
|x² - 8| = 1/√y
x² - 8 = ±(1/√y)
We consider both the positive and negative square root:
x² - 8 = 1/√y or x² - 8 = -1/√y
Solving for y:
1/√y = x² - 8 or -1/√y = x² - 8
√y = 1/(x² - 8) or √y = -1/(x² - 8)
Squaring both sides:
y = (1/(x² - 8))² or y = (-1/(x² - 8))²
Simplifying:
y = 1/(x² - 8)² or y = 1/(x² - 8)²
Therefore, the expression for the inverse function g(f) = f^(-1)(x) is:
g(f) = (1/(x² - 8)²)
    
y = f(x) = 1/(x² - 8)²
Now, swap x and y:
x = 1/(y² - 8)²
To find the inverse function, let's solve for y:
(x² - 8)² = 1/y
√((x² - 8)²) = √(1/y)
|x² - 8| = 1/√y
x² - 8 = ±(1/√y)
We consider both the positive and negative square root:
x² - 8 = 1/√y or x² - 8 = -1/√y
Solving for y:
1/√y = x² - 8 or -1/√y = x² - 8
√y = 1/(x² - 8) or √y = -1/(x² - 8)
Squaring both sides:
y = (1/(x² - 8))² or y = (-1/(x² - 8))²
Simplifying:
y = 1/(x² - 8)² or y = 1/(x² - 8)²
Therefore, the expression for the inverse function g(f) = f^(-1)(x) is:
g(f) = (1/(x² - 8)²)
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.