Question
Consider the function f(x) whose second derivative is f(x)=9x+6sin(x). If f(0)=4 and f(0)=3, what is f(x)? Please do not include the constant (+C) in your answer.
Answers
drwls
You wrote << f(0)=4 and f(0)=3,>> but
both cannot be true. One of the f(x) functions must be the derivative, f'(x). Which is it?
Anyway, all you have to do is integrate your f''(x) once and use the value of f'(x) at x=0 to get the first cosntant, and then integrate it again and use the value of f(0)at x=0 to get the second constant
both cannot be true. One of the f(x) functions must be the derivative, f'(x). Which is it?
Anyway, all you have to do is integrate your f''(x) once and use the value of f'(x) at x=0 to get the first cosntant, and then integrate it again and use the value of f(0)at x=0 to get the second constant
bill nye
oh im sorry it is f(0)=4 and f'(0)=3
bill nye
and it's f''(x)=9x+6sin(x)
sorry
sorry
bill nye
i got the answer 1.5x^3-6sinx+9x+4