Asked by radha
Denzel wants to rope off a 800 m2
rectangular
swimming area using the beach as one of the
sides. What should the dimensions of the
rectangle be in order to use the minimum
amount of rope?
rectangular
swimming area using the beach as one of the
sides. What should the dimensions of the
rectangle be in order to use the minimum
amount of rope?
Answers
Answered by
mathhelper
So you need 2 widths and 1 length
2w + l = 800
l = 800-2w
area = lw =w(800-2w)
= -2w^2 + 800w
a downward parabola, with a min value at its vertex.
the w of the vertex is -800/-4 = 200 ,
( in y = ax^2 + bx + c, the x of the vertex is -b/(2a) )
so the area is 200 m by 800-2(200) or 400 m
2w + l = 800
l = 800-2w
area = lw =w(800-2w)
= -2w^2 + 800w
a downward parabola, with a min value at its vertex.
the w of the vertex is -800/-4 = 200 ,
( in y = ax^2 + bx + c, the x of the vertex is -b/(2a) )
so the area is 200 m by 800-2(200) or 400 m
There are no AI answers yet. The ability to request AI answers is coming soon!