Asked by Danielle
I'm desperate.. I keep getting b=0 and I know it's wrong!!
Find a cubic function f(x) = ax^3 + bx^2 + cx + d that has a local maximum at (-3,3) and a local minimum at (2,0) knowing that c=-12b and d=3-27b.
Find a cubic function f(x) = ax^3 + bx^2 + cx + d that has a local maximum at (-3,3) and a local minimum at (2,0) knowing that c=-12b and d=3-27b.
Answers
Answered by
drwls
You can reduce the number of unkowns to 2 (a and b) by rewriting the equatiosn with substitutions for c and d.
The system appears overdetermined. You could write four equations in two unknowns knowing the value of two points and the fact that f'(x) = 0 at those points. I would try to use the facts that
f'(x) = 3ax^2 + 2bx -12b = 0 at x = -3 and x=2 to solve for a and b.
27a -6b -12b = 27a -18b = 0
12a +4b -12b = 12a -8b = 0
Those last two equations are equivalent; you can only use one of them. So you need to use an equation that says f(-2) = 0, for example.
8a + 4b -[12b*(-2)] +3 -27b = 0
8a + b = -3
24a + 3b = -9
24a -16b = 0
19 b = -9
This does not lead to an integer value for b. I may have made a mistake somewhere. Check my work and thinking
The system appears overdetermined. You could write four equations in two unknowns knowing the value of two points and the fact that f'(x) = 0 at those points. I would try to use the facts that
f'(x) = 3ax^2 + 2bx -12b = 0 at x = -3 and x=2 to solve for a and b.
27a -6b -12b = 27a -18b = 0
12a +4b -12b = 12a -8b = 0
Those last two equations are equivalent; you can only use one of them. So you need to use an equation that says f(-2) = 0, for example.
8a + 4b -[12b*(-2)] +3 -27b = 0
8a + b = -3
24a + 3b = -9
24a -16b = 0
19 b = -9
This does not lead to an integer value for b. I may have made a mistake somewhere. Check my work and thinking
Answered by
Danielle
I understand everything up until the last part with the using equations. Where did 8a and 4b come from?
Answered by
Reiny
I too got myself all caught up in nasty fractions, so I tried a different approach.
Since (2,0) is a minimum and it touches the x-axis, there has to be a double root at x=2
so we have (x-2)(x-2) as factors
since it is a cubic, there can be only one other linear factor
so let the function be
y = a(x-b)(x-2)^2 , my b is not necessarily the same as the drwls's b)
I then found the derivative of that and subbed in the fact that if x=-3, dy/dx = 0
this led to 55a + 10ab = 0
a(55 + 10b) = 0
a = 0, not possible if we want a cubic
or
b = -11/2
I then subbed in (-3,3) in y = a(x-b)(x-2)^2 and using the fact that b=-11/2 I got
a = 6/125
so my function is
f(x) = (6/125)(x+11/2)(x-2)^2
both of your points (2,0) and (-3,3) satisfy,
I then found the derivative of that function and set it equal to zero
that gave me x = 2, or x = -3
Q.E.D.
I will leave it up to your to expand it.
As drwls also noted, there seems to be redundant information.
Since (2,0) is a minimum and it touches the x-axis, there has to be a double root at x=2
so we have (x-2)(x-2) as factors
since it is a cubic, there can be only one other linear factor
so let the function be
y = a(x-b)(x-2)^2 , my b is not necessarily the same as the drwls's b)
I then found the derivative of that and subbed in the fact that if x=-3, dy/dx = 0
this led to 55a + 10ab = 0
a(55 + 10b) = 0
a = 0, not possible if we want a cubic
or
b = -11/2
I then subbed in (-3,3) in y = a(x-b)(x-2)^2 and using the fact that b=-11/2 I got
a = 6/125
so my function is
f(x) = (6/125)(x+11/2)(x-2)^2
both of your points (2,0) and (-3,3) satisfy,
I then found the derivative of that function and set it equal to zero
that gave me x = 2, or x = -3
Q.E.D.
I will leave it up to your to expand it.
As drwls also noted, there seems to be redundant information.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.