Question
The revenue achieved by selling x graphing calculators is figured to be x(45 - 0.5x) dollars.
The cost of each calculator is $25. How many graphing calculators must be sold to make a profit (revenue - cost) of at least $3030.00?
The cost of each calculator is $25. How many graphing calculators must be sold to make a profit (revenue - cost) of at least $3030.00?
Answers
R = 45 x - .5 x^2
C = 25 x
3030 = 20 x - .5 x^2
.5 x^2 - 20 x + 3030 = 0
This has only complex roots. I suspect a typo.
C = 25 x
3030 = 20 x - .5 x^2
.5 x^2 - 20 x + 3030 = 0
This has only complex roots. I suspect a typo.
Related Questions
The Everton college store paid 1532 dollars for an order of42 calculators.The store paid 18 dollars...
The monthly revenue achieved by selling x wristwatches is figured to be x(40-0.2x)dollars. The whol...
The revenue achieved by selling x graphing calculators is figured to be The cost of each calculator...
The cost X, in dollars, to produce graphing calculators is given by the function C(x) = 51x + 2000,...