Asked by Anonymous
                3x4 − 8x3 + 5 = 0,    [2, 3]
(a) Explain how we know that the given equation must have a root in the given interval.
Let
f(x) = 3x4 − 8x3 + 5.
The polynomial f is continuous on [2, 3],
f(2) =
< 0,
and
f(3) =
> 0,
so by the Intermediate Value Theorem, there is a number c in (2, 3) such that
f(c) =
.
In other words, the equation
3x4 − 8x3 + 5 = 0
has a root in [2, 3].
(b) Use Newton's method to approximate the root correct to six decimal places.
            
        (a) Explain how we know that the given equation must have a root in the given interval.
Let
f(x) = 3x4 − 8x3 + 5.
The polynomial f is continuous on [2, 3],
f(2) =
< 0,
and
f(3) =
> 0,
so by the Intermediate Value Theorem, there is a number c in (2, 3) such that
f(c) =
.
In other words, the equation
3x4 − 8x3 + 5 = 0
has a root in [2, 3].
(b) Use Newton's method to approximate the root correct to six decimal places.
Answers
                    Answered by
            Reiny
            
    f(x) = 3x^4 − 8x^3 + 5
f(2) = 3(16) - 8(8) + 5 = -11
f(3) = 3(81) - 8(27) + 5 = 32
Since the function is continuous, it had to cross the x-axis somewhere between 2 and 3
to get from below the x-axis to above the x-axis, that is,
f(c) = 0 for 2 < c < 3
let y = 3x^4 − 8x^3 + 5
y' =12x^3 - 24x^2
Newton said:
f(newx) = oldx - f(oldx)/f ' (oldx)
= x - (3x^4 - 8x^3 + 5)/(12x^3 - 24x^2)
= (12x^4 - 24x^3 - 3x^4 + 8x^3 - 5)/(12x^3 - 24x^2)
= (9x^4 -16x^3 - 5)/(12x^3 - 24x^2)
getting out my calculator and letting oldx = 2.5
oldx newx
2.5 2.575
2.575 2.56834..
2.56834 2.568283..
2.5682837 2.5682837 <---- same input as output
so x = 2.568284 correct to 6 decimals
    
f(2) = 3(16) - 8(8) + 5 = -11
f(3) = 3(81) - 8(27) + 5 = 32
Since the function is continuous, it had to cross the x-axis somewhere between 2 and 3
to get from below the x-axis to above the x-axis, that is,
f(c) = 0 for 2 < c < 3
let y = 3x^4 − 8x^3 + 5
y' =12x^3 - 24x^2
Newton said:
f(newx) = oldx - f(oldx)/f ' (oldx)
= x - (3x^4 - 8x^3 + 5)/(12x^3 - 24x^2)
= (12x^4 - 24x^3 - 3x^4 + 8x^3 - 5)/(12x^3 - 24x^2)
= (9x^4 -16x^3 - 5)/(12x^3 - 24x^2)
getting out my calculator and letting oldx = 2.5
oldx newx
2.5 2.575
2.575 2.56834..
2.56834 2.568283..
2.5682837 2.5682837 <---- same input as output
so x = 2.568284 correct to 6 decimals
                    Answered by
            Damon
            
    f(2) = 3*16 - 8*8 + 5 = 48 - 64 + 5 = -11
f(3) = 3*81 - 8*27 + 5 = 243 - 216 + 5 = +32
NOW move your pencil from y = - 11 to +32 without crossing the x axis :)
then for part b start with x = 2.5 and find the root
dy/dx = 12 x^3 - 24 x^2
    
f(3) = 3*81 - 8*27 + 5 = 243 - 216 + 5 = +32
NOW move your pencil from y = - 11 to +32 without crossing the x axis :)
then for part b start with x = 2.5 and find the root
dy/dx = 12 x^3 - 24 x^2
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.