You have T for max height
h(t) = 4 + 88t - 16t^2
so now evaluate H = h(T)
The range is naturally [0,H]
During halftime of a football game, a sling shot launches T-shirts at the crowd. A T-shirt is launched from a height of 4 feet with an initial upward velocity of 88 feet per second. The T-shirt is caught 32 feet above the field. How long will it take the T-shirt to reach its maximum height? What is the maximum height? What is the range of the function that models the height of the T-shirt over time?
I have the amount of time it will take the t-shirt to reach its maximum height.
2 answers
a. V = Vo + g*T = 0
88 + (-32)T = 0
T =
b. V^2 = Vo^2 + 2g*h = 0
88^2 + (-64)h = 0
h = 121 Ft. above launching point.
ho+h = 4 + 121 = 125 Ft. above gnd.
88 + (-32)T = 0
T =
b. V^2 = Vo^2 + 2g*h = 0
88^2 + (-64)h = 0
h = 121 Ft. above launching point.
ho+h = 4 + 121 = 125 Ft. above gnd.