Question
A curve y has gradient Dy/dx=3x^2-6x+2a)if the curve passes through the origin find it equation b)Find the area of the finite region included between the curve in a)and the x-axis.?
Answers
dy/dx=3x^2 - 6x + 2
y = x^3 - 3x^2 + 2x + c
but it passes throught (0,0)
0 = 0 - 0 + 0 + c -----> c = 0
y = x^3 - 3x^2 + 2x
b) y = x(x^2 - 3x + 2) = x(x - 1)(x - 2)
so the x intercepts are 0, 1, 2
giving you two enclosed areas between the curve and the x-axis
You will need ∫ x^3 - 3x^2 + 2x dx from 0 to 1 + ∫ -x^3 + 3x^2 - 2x dx from 1 to 2
You should have no difficulty with this straight-forward integral.
y = x^3 - 3x^2 + 2x + c
but it passes throught (0,0)
0 = 0 - 0 + 0 + c -----> c = 0
y = x^3 - 3x^2 + 2x
b) y = x(x^2 - 3x + 2) = x(x - 1)(x - 2)
so the x intercepts are 0, 1, 2
giving you two enclosed areas between the curve and the x-axis
You will need ∫ x^3 - 3x^2 + 2x dx from 0 to 1 + ∫ -x^3 + 3x^2 - 2x dx from 1 to 2
You should have no difficulty with this straight-forward integral.
∫ x^3 - 3x^2 + 2x dx from 0 to 1 + ∫ -x^3 + 3x^2 - 2x dx from 1 to 2
Related Questions
A curve passes through the point (1,-11) and it's gradient at any point is ax^2 + b, where a and b a...
1. Consider the curve y=x^2.
a. write down (dy)/(dx)
My answer: 2x
The point P(3,9) lies on t...
The gradient of a curve is defined by
dy/dx = 3x^(1/2) - 6
Given the point (9, 2) lies on the...
(a) Integrate wrt x:(〖2x〗^4- x^2+2)/x^2 (b) The gradient of the tangent at a point on a curve is g...