Asked by Anonymous
14) Consider the parabola with equation y = x^2 - 6x + 5.
a. Use any suitable method to determine the coordinates of the turning point of this parabola.
b. Hence, state for which values of c the line y = c will intersect the parabola:
i. twice
ii. once
iii. not at all
a. Use any suitable method to determine the coordinates of the turning point of this parabola.
b. Hence, state for which values of c the line y = c will intersect the parabola:
i. twice
ii. once
iii. not at all
Answers
Answered by
Reiny
You are probably expected to use "completing the square", although other methods are just as suitable.
y = x^2 - 6x + 5
= x^2 - 6x + 9 - 9 + 5
= (x-3)^2 - 4
The vertex is (3, -4)
so a horizontal line of y = -4 will run through this vertex , that's your "once"
y = -3 will cut it twice
y = -6 will not touch the parabola
in general
y = -4 , once
y = c , c > -4, twice
y = c c < -4 , not at all
y = x^2 - 6x + 5
= x^2 - 6x + 9 - 9 + 5
= (x-3)^2 - 4
The vertex is (3, -4)
so a horizontal line of y = -4 will run through this vertex , that's your "once"
y = -3 will cut it twice
y = -6 will not touch the parabola
in general
y = -4 , once
y = c , c > -4, twice
y = c c < -4 , not at all
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.