Asked by john
                Let f(x) = x^5 + 3x^2 − 5x − 7, find the interval(s) where f is increasing and decreasing.
            
            
        Answers
                    Answered by
            Steve
            
    f is increasing where f' > 0
f' = 5x^4+6x-5
f' = 0 at x = -1.2588 and 0.6677
f' changes sign at those roots, so
f' > 0 on (-∞,-1.2588)U(0.6677,∞)
f' < 0 on (-1.2588,0.6677)
a look at the graph shows that f is in/de-creasing on these intervals
    
f' = 5x^4+6x-5
f' = 0 at x = -1.2588 and 0.6677
f' changes sign at those roots, so
f' > 0 on (-∞,-1.2588)U(0.6677,∞)
f' < 0 on (-1.2588,0.6677)
a look at the graph shows that f is in/de-creasing on these intervals
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.