Asked by Sarah
                The sum of the interior angles of a regular polygon equals 1260 degrees. How many sides does a polygon have?
            
            
        Answers
                    Answered by
            Steve
            
    1260 = 180*7
So, a 9-gon fits the bill
    
So, a 9-gon fits the bill
                    Answered by
            Leslie
            
    Why did you multiply by 7?
    
                    Answered by
            Steve
            
    actually, you divide by 180. A n-sided polygon's interior angles sum to (n-2)*180. So, here we have
(n-2)*180 = 1260
n-2 = 1260/180
n-2 = 7
n = 9
    
(n-2)*180 = 1260
n-2 = 1260/180
n-2 = 7
n = 9
                    Answered by
            shrishti shukla
            
    For a regular polygon with nnn sides,
\text{Sum of interior angles} = (n-2)\times 180\degreeSum of interior angles=(n−2)×180°start text, S, u, m, space, o, f, space, i, n, t, e, r, i, o, r, space, a, n, g, l, e, s, end text, equals, left parenthesis, n, minus, 2, right parenthesis, times, 180, degree
[How do we get this?]
For a regular polygon with nnn sides,
\text{interior angle} = \dfrac{\text{Sum of interior angles}}{\text{number of sides}}interior angle=
number of sides
Sum of interior angles
start text, i, n, t, e, r, i, o, r, space, a, n, g, l, e, end text, equals, start fraction, start text, S, u, m, space, o, f, space, i, n, t, e, r, i, o, r, space, a, n, g, l, e, s, end text, divided by, start text, n, u, m, b, e, r, space, o, f, space, s, i, d, e, s, end text, end fraction
We can find the number of sides, nnn, and use it to find the measure of each interior angle.
Hint #22 / 4
Finding nnn
\begin{aligned} \text{Sum of interior angles}&=(n-2)\times180\degree\\\\ 1260\degree&=(n-2)\times180\degree\\\\ n&=9 \end{aligned}
Sum of interior angles
1260°
n
  
=(n−2)×180°
=(n−2)×180°
=9
 
So, the given polygon is 999 sided or a nonagon.
Hint #33 / 4
\begin{aligned} &\phantom{=}\text{Each interior angle}\\\\ &=\dfrac{\text{Sum of interior angles}}{n}\\\\ &=\dfrac{1260\degree}{9}\\\\ &=140\degree \end{aligned}
  
=Each interior angl9
1260°
 
=140°
The measure of each interior angle is 140, degree.
    
\text{Sum of interior angles} = (n-2)\times 180\degreeSum of interior angles=(n−2)×180°start text, S, u, m, space, o, f, space, i, n, t, e, r, i, o, r, space, a, n, g, l, e, s, end text, equals, left parenthesis, n, minus, 2, right parenthesis, times, 180, degree
[How do we get this?]
For a regular polygon with nnn sides,
\text{interior angle} = \dfrac{\text{Sum of interior angles}}{\text{number of sides}}interior angle=
number of sides
Sum of interior angles
start text, i, n, t, e, r, i, o, r, space, a, n, g, l, e, end text, equals, start fraction, start text, S, u, m, space, o, f, space, i, n, t, e, r, i, o, r, space, a, n, g, l, e, s, end text, divided by, start text, n, u, m, b, e, r, space, o, f, space, s, i, d, e, s, end text, end fraction
We can find the number of sides, nnn, and use it to find the measure of each interior angle.
Hint #22 / 4
Finding nnn
\begin{aligned} \text{Sum of interior angles}&=(n-2)\times180\degree\\\\ 1260\degree&=(n-2)\times180\degree\\\\ n&=9 \end{aligned}
Sum of interior angles
1260°
n
=(n−2)×180°
=(n−2)×180°
=9
So, the given polygon is 999 sided or a nonagon.
Hint #33 / 4
\begin{aligned} &\phantom{=}\text{Each interior angle}\\\\ &=\dfrac{\text{Sum of interior angles}}{n}\\\\ &=\dfrac{1260\degree}{9}\\\\ &=140\degree \end{aligned}
=Each interior angl9
1260°
=140°
The measure of each interior angle is 140, degree.
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.