Asked by kim
1. A cart of weight 20 N is accelerated across a level surface at .15 m/s^2. What net force acts on the wagon? (g=9.8m/s^2)
2. An automobile of mass 2000 kg moving at 30 m/s is braked suddenly with a constant braking force of 10000 N. How far does the car travel before stopping?
3. An airplane of mass 1.2 X10^4 kg tows a glider of mass .6X10^4 kg. The airplane propellers provide a net foward thrust of 3.6X10^4 N. What is the gliders acceleration?
how do i solve these?
2. An automobile of mass 2000 kg moving at 30 m/s is braked suddenly with a constant braking force of 10000 N. How far does the car travel before stopping?
3. An airplane of mass 1.2 X10^4 kg tows a glider of mass .6X10^4 kg. The airplane propellers provide a net foward thrust of 3.6X10^4 N. What is the gliders acceleration?
how do i solve these?
Answers
Answered by
drwls
You solve #1 and #3 by applying Newton's Second Law, F = m a.
For the second problem, you first need to solve for the required deceleration rate. a = F/m = 5 m/s^2
The time it takes to stop is
t = Vo/a = (30 m/s)/5 m/s^2 = 6 s
The distance travelled while stopping is that stopping time multiplied by the average velocity (Vo/2),
15 m/s * 6 s = 90 m
For the second problem, you first need to solve for the required deceleration rate. a = F/m = 5 m/s^2
The time it takes to stop is
t = Vo/a = (30 m/s)/5 m/s^2 = 6 s
The distance travelled while stopping is that stopping time multiplied by the average velocity (Vo/2),
15 m/s * 6 s = 90 m
Answered by
Aigerim
From Newtons' 2nd Law of Motion,
F = ma
where
F = braking force = 10,000 N
m = mass of the car = 2,000 kg.
a = acceleration
Substituting values,
-10,000 = 2,000(a)
NOTE the negative sign attached to the braking force. This simply denotes that the direction of this particular force is opposite that of the motion of the automobile.
Solving for "a",
a = -10,000/2,000
a = -5 m/sec^2
The negative value of the acceleration means that when the brakes were applied, the car, obviously, was slowing down until it came to a complete stop.
The next formula to use is
Vf^2 - Vo^2 = 2as
where
Vf = final velocity = 0 (when the car finally stops)
Vo = initial velocity = 30 m/sec (given)
a = acceleration = -5 m/sec^2 (as calculated above)
s = stopping distance of car
Substituting values,
0 - 30^2 = 2(-5)(s)
-900 = -10s
and solving for "s",
s = 900/10
s = 90 meters
F = ma
where
F = braking force = 10,000 N
m = mass of the car = 2,000 kg.
a = acceleration
Substituting values,
-10,000 = 2,000(a)
NOTE the negative sign attached to the braking force. This simply denotes that the direction of this particular force is opposite that of the motion of the automobile.
Solving for "a",
a = -10,000/2,000
a = -5 m/sec^2
The negative value of the acceleration means that when the brakes were applied, the car, obviously, was slowing down until it came to a complete stop.
The next formula to use is
Vf^2 - Vo^2 = 2as
where
Vf = final velocity = 0 (when the car finally stops)
Vo = initial velocity = 30 m/sec (given)
a = acceleration = -5 m/sec^2 (as calculated above)
s = stopping distance of car
Substituting values,
0 - 30^2 = 2(-5)(s)
-900 = -10s
and solving for "s",
s = 900/10
s = 90 meters
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.