Asked by rennie
There are 5 lemon sweets and 4 orange sweets in a bag, susan takes one out randomly and eats it then ann takes one out at random. calculate the probability that they both take out a sweet of the same flavour.
Is there 3 possible outcomes. I am really stuck trying to work this out, can someone give advice please how to calculate.
Is there 3 possible outcomes. I am really stuck trying to work this out, can someone give advice please how to calculate.
Answers
Answered by
Damon
susan takes lemon then ann takes lemon:
5/9 * 4/8 = 20/72 = 5/13
susan takes orange then ann takes orange:
4/9 * 3/8 = 1/6
add them
5/9 * 4/8 = 20/72 = 5/13
susan takes orange then ann takes orange:
4/9 * 3/8 = 1/6
add them
Answered by
PsyDAG
Only one possible outcome.
If the events are independent, the probability of both/all events occurring is determined by multiplying the probabilities of the individual events.
P (Both lemon) = 5/9 * (5-1)/(9-1) = ?
P (both orange) = 4/9 * 3/8 = ?
Either-or probabilities are found by adding the individual probabilities.
P(both lemon) + P(both orange) = ?
If the events are independent, the probability of both/all events occurring is determined by multiplying the probabilities of the individual events.
P (Both lemon) = 5/9 * (5-1)/(9-1) = ?
P (both orange) = 4/9 * 3/8 = ?
Either-or probabilities are found by adding the individual probabilities.
P(both lemon) + P(both orange) = ?
Answered by
Damon
5/9 * 4/8 = 20/72 = 5/18
Answered by
rennie
Thanks to both Damon and PsyDAG for helping me get round this problem. I think I was making it too complicated.
Answered by
PsyDAG
Welcome
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.