Asked by Trish Goal
How many square units are in the area of the triangle whose vertices are the x and y intercepts of the cuure
y=(x-3)^2(x+2)?
y=(x-3)^2(x+2)?
Answers
Answered by
Reiny
So we are going to need those intercepts,
the x - intercepts are easy
x = 3 or x = -2
for the y-intercept, let x = 0
y = (-3)^2 (2) = 18
so the points of the triangle are (3,0), (-2,0) and (0,18)
so the base of the triangle is 5
and the height is 18
area = (1/2)(base)(height)
= (1/2)(5)(18) = 45 square units
the x - intercepts are easy
x = 3 or x = -2
for the y-intercept, let x = 0
y = (-3)^2 (2) = 18
so the points of the triangle are (3,0), (-2,0) and (0,18)
so the base of the triangle is 5
and the height is 18
area = (1/2)(base)(height)
= (1/2)(5)(18) = 45 square units
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.