Asked by blue
                The two legs of a right triangle are 10 inches and 7 inches. What is the length of the hypotenuse to the nearest inch?
A.17
B.12
C.9
D.7
Is the answer A?
            
        A.17
B.12
C.9
D.7
Is the answer A?
Answers
                    Answered by
            Ms. Sue
            
    No.  It is not A.
    
                    Answered by
            blue
            
    OK I'm sorry. Is the answer C?
    
                    Answered by
            GanonTEK
            
    Not C either.
10^2 + 7^2 = hyp^2
Find the hyp from that
    
10^2 + 7^2 = hyp^2
Find the hyp from that
                    Answered by
            Ms. Sue
            
    Let the two legs be a and b.  Let the hypotenuse be c.
a^2 + b^2 = c^2
    
a^2 + b^2 = c^2
                    Answered by
            blue
            
    So the answer has to be D then right?
    
                    Answered by
            Brady
            
    No. Use this equation to find the hypotenuse:
a^2 + b^2 = c^2
10^2 + 7^2 = c^2
100 + 49 = c^2
149 = c^2
12.206555615733702951897855256623 = c
12.206555615733702951897855256623 is the closest to 12, so B is the answer.
    
a^2 + b^2 = c^2
10^2 + 7^2 = c^2
100 + 49 = c^2
149 = c^2
12.206555615733702951897855256623 = c
12.206555615733702951897855256623 is the closest to 12, so B is the answer.
                    Answered by
            blue
            
    OK thanks everybody :0)
    
                    Answered by
            Brady
            
    You're welcome, Blue. :)
    
                    Answered by
            Jake
            
    The answer is B, guys you answered everything but (B) and the other answers are wrong. Take it from me I got the question wrong when I put the answer (c) so it showed me what was right.
Yep, well see yuh
    
Yep, well see yuh
                    Answered by
            Giuliana 
            
    It’s B number 12 
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.