Asked by Mina
solve second-order initial value problem
y"(x)= x e^-2x
y'(0)= 0
y(0)= 0
y"(x)= x e^-2x
y'(0)= 0
y(0)= 0
Answers
Answered by
drwls
First you need to integrate y"(x). This looks like a situation where "integration by parts" can be used.
Let u(v) = x and dv = e^-2x dx
du = dx v = (-1/2)*e^-2x
Integral of u dv = uv - integral of v du
= (-x/2)e(-2x) + Integral of(1/2)*e^-2x dx
Finish that off and use the y'(0) = 0 condition to solve for the arbitary constant. Once you have dy/dx, integrate again and use the initial condition at y(0) for the y(x) solution.
Let u(v) = x and dv = e^-2x dx
du = dx v = (-1/2)*e^-2x
Integral of u dv = uv - integral of v du
= (-x/2)e(-2x) + Integral of(1/2)*e^-2x dx
Finish that off and use the y'(0) = 0 condition to solve for the arbitary constant. Once you have dy/dx, integrate again and use the initial condition at y(0) for the y(x) solution.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.