The slope-intercept form of a linear equation is given by y = mx + b, where m is the slope and b is the y-intercept.
To find the slope (m), we can use the formula:
m = (y2 - y1) / (x2 - x1)
Given the points (1,4) and (3,10), we can substitute the coordinates into the formula:
m = (10 - 4) / (3 - 1)
m = 6 / 2
m = 3
Now that we have the slope (m), we can substitute it into the slope-intercept form equation along with one of the given points to solve for the y-intercept (b).
Let's use the point (1,4):
4 = 3(1) + b
4 = 3 + b
4 - 3 = b
b = 1
Therefore, the equation of the line in slope-intercept form that passes through the points (1,4) and (3,10) is:
y = 3x + 1
Write an equation in slipe intercept form, of a line that passes through(1,4) and(3,10)
1 answer