which of the fraction is equivalent to 2/3

1 answer

To find fractions that are equivalent to \( \frac{2}{3} \), you can multiply the numerator and the denominator by the same non-zero number.

For example:

  • If you multiply both the numerator and the denominator by 2, you get: \[ \frac{2 \times 2}{3 \times 2} = \frac{4}{6} \]

  • If you multiply both by 3, you get: \[ \frac{2 \times 3}{3 \times 3} = \frac{6}{9} \]

  • If you multiply both by 4, you get: \[ \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \]

So, \( \frac{4}{6} \), \( \frac{6}{9} \), and \( \frac{8}{12} \) are all equivalent to \( \frac{2}{3} \).

In general, any fraction of the form \( \frac{2n}{3n} \) (where \( n \) is a non-zero integer) will be equivalent to \( \frac{2}{3} \).