Which of the following summarizes the reflections that flip a regular triangle onto itself?(1 point)

Responses

A regular triangle has three lines of reflection drawn through the midpoint of each set of consecutive sides.
A regular triangle has three lines of reflection drawn through the midpoint of each set of consecutive sides. - no response given

A regular triangle has one line of reflection drawn from the top vertex perpendicular to the opposite side.
A regular triangle has one line of reflection drawn from the top vertex perpendicular to the opposite side. - no response given

A regular triangle has no lines of reflection that will flip it onto itself.
A regular triangle has no lines of reflection that will flip it onto itself. - no response given

A regular triangle has three lines of reflection drawn through each vertex through the midpoint of the opposite side.

1 answer

The correct response that summarizes the reflections that flip a regular triangle onto itself is:

A regular triangle has three lines of reflection drawn through each vertex through the midpoint of the opposite side.

This is because in a regular triangle, also known as an equilateral triangle, you can reflect it over three lines of symmetry: one from each vertex to the midpoint of the opposite side. Each of these lines will map the triangle onto itself.