To simplify the expression \(-2i(3i + 4i)\), we first combine the terms inside the parentheses:
\[ 3i + 4i = 7i \]
Now, we substitute this back into the expression:
\[ -2i(7i) \]
Next, we multiply:
\[ -2i \times 7i = -14i^2 \]
We know that \(i^2 = -1\), so we can replace \(i^2\) with \(-1\):
\[ -14i^2 = -14(-1) = 14 \]
Thus, the expression \(-2i(3i + 4i)\) simplifies to:
\[ \boxed{14} \]