Which factors of the base would help simplify the expression 1614?(1 point)

Responses

16=8⋅8
16 equals 8 times 8

16=4⋅2⋅2
16 equals 4 times 2 times 2

16=2⋅2⋅2⋅2
16 equals 2 times 2 times 2 times 2

16=4⋅4
16 equals 4 times 4

1 answer

To simplify the expression \( 16^{14} \), we need to express \( 16 \) in terms of its prime factors.

The factorization of \( 16 \) is:

  • \( 16 = 2^4 \)

This means that we can rewrite \( 16^{14} \) as: \[ 16^{14} = (2^4)^{14} = 2^{4 \cdot 14} = 2^{56} \]

Among the provided options, the one that simplifies nicely and provides the necessary information is:

  • 16 = 2 ⋅ 2 ⋅ 2 ⋅ 2 (This demonstrates that \( 16 \) is made up of four \( 2 \)'s, which is the key for further simplification into powers of \( 2 \).)

So the correct response from the options given that would help simplify the expression is: 16=2⋅2⋅2⋅2 (16 equals 2 times 2 times 2 times 2).

Similar Questions
  1. Which factors of the base would help simplify the expression 1614?(1 point)Responses 16 = 2⋅2⋅2⋅2 16 = 8⋅8 16 = 4⋅4
    1. answers icon 15 answers
    1. answers icon 5 answers
  2. 1. Simplify the expression 7^9/7^3a.7^3*** b.7^6 c.7^12 d.1^6 2. Simplify the expression z^8/z^12 a.z^20 b.z^4 c.1/z^-4 d.1/z^4
    1. answers icon 15 answers
    1. answers icon 1 answer
more similar questions