To calculate the volume of a cone, we'll use the formula: V = (1/3) * π * r^2 * h, where V represents the volume, π represents pi (approximately 3.14159), r is the radius, and h is the height or length.
In this case, the radius (r) is 5 cm and the length (h) is 9 cm. We'll substitute these values into the formula:
V = (1/3) * π * (5 cm)^2 * 9 cm
V ≈ (1/3) * 3.14159 * 25 cm^2 * 9 cm
V ≈ 0.33333 * 3.14159 * 25 cm^2 * 9 cm
V ≈ 0.33333 * 3.14159 * 225 cm^3
V ≈ 235.619449375 cm^3
Rounded to the nearest tenth, the volume of the cone is approximately 235.6 cubic centimeters.
What is the volume of the cone in cubic centimeters? Round your answer to the nearest tenth. (1 point)
the radius is 5cm and the length is 9cm
3 answers
its incorrect
Apologies for the incorrect answer. Let's recalculate the volume of the cone.
The formula for the volume of a cone is V = (1/3) * π * r^2 * h.
Given that the radius (r) is 5 cm and the length (h) is 9 cm, substituting these values into the formula:
V = (1/3) * π * (5 cm)^2 * 9 cm
V = (1/3) * π * 25 cm^2 * 9 cm
V = (1/3) * π * 225 cm^3
V ≈ 235.6 cm^3
Therefore, rounded to the nearest tenth, the volume of the cone is approximately 235.6 cubic centimeters.
The formula for the volume of a cone is V = (1/3) * π * r^2 * h.
Given that the radius (r) is 5 cm and the length (h) is 9 cm, substituting these values into the formula:
V = (1/3) * π * (5 cm)^2 * 9 cm
V = (1/3) * π * 25 cm^2 * 9 cm
V = (1/3) * π * 225 cm^3
V ≈ 235.6 cm^3
Therefore, rounded to the nearest tenth, the volume of the cone is approximately 235.6 cubic centimeters.