To find the measure of the exterior angle \( x \), we first need to relate it to the interior angles. An exterior angle of a triangle is equal to the sum of the two non-adjacent interior angles.
In this case, if the angles given are the interior angles of a triangle, we have:
- One angle = 37 degrees
- Another angle = 42 degrees
To find the third angle of the triangle, we use the fact that the sum of the interior angles of a triangle is always 180 degrees:
\[ \text{Third angle} = 180 - (37 + 42) = 180 - 79 = 101 \text{ degrees} \]
Now, the exterior angle \( x \) that corresponds to the 101-degree angle is:
\[ x = 101 \text{ degrees} \]
Thus, the measure of the exterior angle \( x \) is 101 degrees.