To find the length of the hypotenuse (c) in a right triangle, we can use the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (c) is equal to the sum of the squares of the other two sides.
In this case, let's assume that 48yd and 64yd are the two other sides of the triangle.
So, we have:
c^2 = 48^2 + 64^2
c^2 = 2304 + 4096
c^2 = 6400
Taking the square root of both sides to solve for c, we get:
c = √6400
c ≈ 80
Therefore, the length of the hypotenuse is approximately 80 yards.
What is the length of the hypotenuse? If necessary, round to the nearest tenth.
c= yard
c, 48yd, 64yd
what's the steps?
1 answer