Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
What is the highest degree for the expression (3x2+4)(x5−3)−12x9−24x3x+2 ?(1 point) Responses 9 9 8 8 1010 7Asked by d
What is the highest degree for the expression (3x2+4)(x5−3)−12x9−24x3x+2?(1 point)
Responses
9
9
8
8
10
10
7
7
Responses
9
9
8
8
10
10
7
7
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To determine the highest degree of the expression \((3x^2 + 4)(x^5 - 3) - 12x^9 - 24x^3 x + 2\), we first need to find the degree of each part of the expression.
1. **For the product \((3x^2 + 4)(x^5 - 3)\)**:
- The degree of \(3x^2\) is 2.
- The degree of \(x^5\) is 5.
- When multiplying, the degrees add, so the degree of \((3x^2 + 4)(x^5 - 3)\) is \(2 + 5 = 7\).
2. **Next, consider \(-12x^9\)**:
- This term has a degree of 9.
3. **Now, look at \(-24x^3x\)**:
- This can be simplified to \(-24x^4\), which has a degree of 4.
4. **Finally, the constant term \(+2\)**:
- This term has a degree of 0.
Now we compile the degrees from each part:
- From \((3x^2 + 4)(x^5 - 3)\): degree 7
- From \(-12x^9\): degree 9
- From \(-24x^4\): degree 4
- From \(+2\): degree 0
The highest degree among these terms is \(\text{degree } 9\) from \(-12x^9\).
Thus, the highest degree for the expression is:
**9**
1. **For the product \((3x^2 + 4)(x^5 - 3)\)**:
- The degree of \(3x^2\) is 2.
- The degree of \(x^5\) is 5.
- When multiplying, the degrees add, so the degree of \((3x^2 + 4)(x^5 - 3)\) is \(2 + 5 = 7\).
2. **Next, consider \(-12x^9\)**:
- This term has a degree of 9.
3. **Now, look at \(-24x^3x\)**:
- This can be simplified to \(-24x^4\), which has a degree of 4.
4. **Finally, the constant term \(+2\)**:
- This term has a degree of 0.
Now we compile the degrees from each part:
- From \((3x^2 + 4)(x^5 - 3)\): degree 7
- From \(-12x^9\): degree 9
- From \(-24x^4\): degree 4
- From \(+2\): degree 0
The highest degree among these terms is \(\text{degree } 9\) from \(-12x^9\).
Thus, the highest degree for the expression is:
**9**
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.