To analyze the relationship between the number of stitches and the length of the row, let's look at the data given:
- For 7 stitches: Length = 12 cm
- For 13 stitches: Length = 28 cm
- For 24 stitches: Length = 26 cm
Let's establish a clear relationship between the number of stitches and the length:
Looking at the ratios:
- 7 stitches: 12 cm → 12 / 7 ≈ 1.71 (Length per stitch)
- 13 stitches: 28 cm → 28 / 13 ≈ 2.15 (Length per stitch)
- 24 stitches: 26 cm → 26 / 24 ≈ 1.08 (Length per stitch)
The ratios are not consistent, which suggests it’s not a direct linear relationship.
However, if we consider a consistent unit rate of length per stitch or further analyze the increments and if it's meant for a fixed number of connections, we infer it’s generally linear but not directly proportional in a single easy formula with multiplication like "number of stitches = constant x length".
The conclusion based on common ratios implies that:
The closest statement to summarize this data based on one of the provided responses might suggest:
- The number of stitches is approximately 3 times the length for lower values (e.g., 7-12 ratio).
This is not perfect but from the choices provided, "The number of stitches is 3 times the length" is the most reasonable option in cases. Thus:
Answer: The number of stitches is 3 times the length.