using the completing-the-square method, find the vertex of the function f(x)=5x^2+10x+8 and indicate whether it is a minimum or a maximum and at what point

1 answer

To find the vertex of the function using the completing-the-square method, we need to rewrite the function in the form of:

f(x) = a(x - h)^2 + k

where (h, k) represents the vertex of the parabola.

For the function f(x) = 5x^2 + 10x + 8, we start by factoring out the common factor of 5 from the first two terms:

f(x) = 5(x^2 + 2x) + 8

Next, we need to complete the square for the quadratic term (x^2 + 2x). To do so, we take half of the coefficient of the linear term (2x), square it, and add/subtract it inside the parentheses:

f(x) = 5(x^2 + 2x + (2/2)^2) + 8 - 5(2/2)^2

f(x) = 5(x^2 + 2x + 1) + 8 - 5(1)

f(x) = 5(x^2 + 2x + 1) + 8 - 5

f(x) = 5(x + 1)^2 + 3

Now the function is in the desired form, and we can see that the vertex is at the point (-1, 3).

Since the coefficient of the squared term (5) is positive, the parabola opens upwards. Therefore, the vertex (-1, 3) is the minimum point of the function f(x) = 5x^2 + 10x + 8.
Similar Questions
    1. answers icon 1 answer
  1. Find the vertex of the parabola y=3x^2+x+5which method did they teach you? Completing the square or using a formula? y=3x^2+x+5=
    1. answers icon 0 answers
  2. 1.) Simplify the expression.[sqrt3 + 2i][sqrt3 - 2i] 2.) Solve using the square root property. (y - 4)2 = -18 3.) Rewrite the
    1. answers icon 4 answers
    1. answers icon 1 answer
more similar questions