Using a number line, what whole number and rational number to the nearest half is 40−−√ between?
2 answers
On a number line, we can see that the whole numbers closest to $\sqrt{40}$ are $\sqrt{36}=6$ and $\sqrt{49}=7$. Since $\sqrt{40}$ is between $6$ and $7$, $\sqrt{40}$ is between $6.5$ and $7.5$ to the nearest half. As $\sqrt{40} \approx 6.32$, we see that $\sqrt{40}$ is closest to $\boxed{6\frac{1}{3}}$ when rounded to the nearest half.
Using a number line, what whole number and rational number to the nearest half is 40−−√ between?