Use the order of operations to simplify 12−2^3+4÷2+2^4 .(1 point) 14 14 22 22 24 24 20 20

1 answer

To simplify the expression \( 12 - 2^3 + 4 \div 2 + 2^4 \) using the order of operations (PEMDAS/BODMAS), follow these steps:

  1. Calculate the powers:

    • \( 2^3 = 8 \)
    • \( 2^4 = 16 \)

    Now the expression looks like: \[ 12 - 8 + 4 \div 2 + 16 \]

  2. Next, perform the division:

    • \( 4 \div 2 = 2 \)

    Now the expression updates to: \[ 12 - 8 + 2 + 16 \]

  3. Now, perform the operations from left to right:

    • Start with \( 12 - 8 = 4 \)
    • Then, \( 4 + 2 = 6 \)
    • Finally, \( 6 + 16 = 22 \)

So, the simplified value of the expression is: \[ \boxed{22} \]