Use the image to answer the question. Betty is writing a proof of the Pythagorean Theorem using the diagram shown. In the diagram, there is a large square. A smaller square is drawn inside the large square, dividing the large square into a smaller square and 4 small triangles. Step 1: First, I know that the area of a triangle is equal to bh2 . The area of each small triangle would be ab2 . Since there are 4 triangles in the entire square, the area of all 4 triangles together would be equal to 2ab . The area of the small square in the middle can be represented by c2 since the sides each have a length of c . Therefore, the area of the entire large square can be written as 2ab+c2 . Step 2: Another way to think about the area of the entire large square is by looking at its side lengths. The length of each side can be written as a+b , so the area would be (a+b)×(a+b) . Step 3: Since we've expressed the area of the large square in two different ways, now set those two areas equal to each other and then simplify using algebra. (a+b)×(a+b)=2ab+c2 a2+2ab+b2=2ab+c2 a2+b2=c2 In which step of Betty's proof did she make a mistake? Enter 1 for Step 1, enter 2 for Step 2, enter 3 for Step 3, or enter 4 if Betty did not make a mistake in her proof. (1 point) Skip to navigation
2 answers
Betty made a mistake in Step 1 of her proof. The mistake is in the statement "The area of all 4 triangles together would be equal to 2ab." This statement is incorrect, as the correct area of all 4 triangles together should be equal to ab. Therefore, the correct expression for the area of the large square would be ab + c^2, not 2ab + c^2.
explain bot what does that mean