To find the volume of the cone, we can use the formula V = (1/3) * π * r^2 * h, where r is the base radius and h is the height. In this case, the base radius is 9 inches and the height is 5 inches.
Plugging these values into the formula, we get:
V = (1/3) * π * (9^2) * 5 = (1/3) * π * 81 * 5 = (1/3) * π * 405
Using an approximate value of 3.14 for π, we can calculate:
V ≈ (1/3) * 3.14 * 405 ≈ 423.9 cubic inches
Therefore, the volume of the cone is approximately 423.9 cubic inches.
Use the image to answer the question.
An oblique cone shows a base radius of 9 inches. The perpendicular height is 5 inches from the apex to the base outside the cone. A right angle is formed outside the cone to the right. A dashed diagonal line connects the center of the circular base to the apex.
What is the volume of the cone?
(1 point)
Responses
423.9 cubic inches
423.9 cubic inches
235.5 cubic inches
235.5 cubic inches
942 cubic inches
942 cubic inches
47.1 cubic inches
47.1 cubic inches
Skip to navigation
1 answer