Use the image to answer the question.
An illustration shows a triangular prism and a triangular pyramid. The edges that are not visible are marked as dashed lines. The triangular prism has its triangular face as the base. The area of the triangular face is labeled as upper B equals 10 inches squared. The length is 7 inches. The triangular pyramid has the triangular face as its base with the area labeled upper B equals 10 inches squared. The perpendicular height of the pyramid is 7 inches.
How does the volume of the prism compare to the volume of the pyramid?
7 answers
The volume of the triangular prism is larger than the volume of the triangular pyramid. This is because the prism has a greater height (7 inches) compared to the pyramid, which has a perpendicular height of only 7 inches. Both shapes have the same base area (10 inches squared), but the prism's height extends further, resulting in a larger volume.
so what the answer
The volume of the prism is greater than the volume of the pyramid.
(1 point)
Responses
The volume of the prism is three times as large as the volume of the pyramid.
The volume of the prism is three times as large as the volume of the pyramid.
The volume of the pyramid is three times as large as the volume of the prism.
The volume of the pyramid is three times as large as the volume of the prism.
The volume of the prism is the same as the volume of the pyramid.
The volume of the prism is the same as the volume of the pyramid.
The volume of the prism is 13 the size of the pyramid.
which one pick one
Responses
The volume of the prism is three times as large as the volume of the pyramid.
The volume of the prism is three times as large as the volume of the pyramid.
The volume of the pyramid is three times as large as the volume of the prism.
The volume of the pyramid is three times as large as the volume of the prism.
The volume of the prism is the same as the volume of the pyramid.
The volume of the prism is the same as the volume of the pyramid.
The volume of the prism is 13 the size of the pyramid.
which one pick one
The volume of the prism is three times as large as the volume of the pyramid.
Use the image to answer the question.
An illustration shows a triangle with sides measuring 21, 17, and 10. A perpendicular line, from the side measuring 21 to the opposite angle, measures 8. A right angle symbol is shown to the left of the perpendicular line.
A prism and a pyramid both have this triangular base. If both shapes have the same height and the volume of the prism is 1,092 cubic units, what is the volume of the pyramid?
An illustration shows a triangle with sides measuring 21, 17, and 10. A perpendicular line, from the side measuring 21 to the opposite angle, measures 8. A right angle symbol is shown to the left of the perpendicular line.
A prism and a pyramid both have this triangular base. If both shapes have the same height and the volume of the prism is 1,092 cubic units, what is the volume of the pyramid?
To find the volume of the pyramid, we need to remember that the volume of a pyramid is one-third the volume of a prism with the same base and height.
Given that the volume of the prism is 1,092 cubic units, the volume of the pyramid would be one-third of this:
Volume of pyramid = 1/3 * 1,092
Volume of pyramid = 364 cubic units
Therefore, the volume of the pyramid with the same base and height would be 364 cubic units.
Given that the volume of the prism is 1,092 cubic units, the volume of the pyramid would be one-third of this:
Volume of pyramid = 1/3 * 1,092
Volume of pyramid = 364 cubic units
Therefore, the volume of the pyramid with the same base and height would be 364 cubic units.