Use the image to answer the question.

An illustration shows a 2 D net of a triangular prism with all of its sides open and visible. Dimensions are labeled. The parts that are not visible in 3 D view are marked with dashed lines. It appears as a triangle in the middle attached to a rectangle on each side. The sides of two legs of the triangle are each labeled 9 centimeters. The length and width of the rectangles is 17 centimeters and 9 centimeters respectively. Another triangle of vertical height 7.8 centimeters is attached to one of the rectangles, opposite to the middle triangle.

What is the total surface area represented by this net of a triangular prism? Your answer should have two decimal places.

(1 point)
___ cm2

1 answer

The total surface area of the triangular prism can be calculated by adding the areas of all its faces.

- The area of the two triangles (base and top) can be calculated as 2 * (1/2 * base * height) = 2 * (1/2 * 9 * 7.8) = 70.2 cm².
- The area of the two rectangles (front and back) can be calculated as 2 * (length * width) = 2 * (17 * 9) = 306 cm².
- The area of the two triangles (side faces) can be calculated as 2 * (1/2 * base * height) = 2 * (1/2 * 17 * 7.8) = 132.6 cm².

Therefore, the total surface area is 70.2 + 306 + 132.6 = 508.8 cm².