Use the image to answer the question.

An illustration of a coordinate plane with four quadrants shows the x-axis extending from negative 9 to 9 in increments of 1 and the y-axis extending from negative 11 to 11 in increments of 1. A triangle A B C is plotted on the graph. The triangle A B C has its vertices marked with closed points at A left parenthesis 2 comma negative 1 right parenthesis, B left parenthesis 6 comma negative 3 right parenthesis, and C left parenthesis 1 comma negative 3 right parenthesis.

Reflect triangle ABC
with respect to the x
-axis and the y
-axis. What are the vertices of triangle A′B′C′
?

(1 point)
Responses

The vertices of triangle A′B′C′
are A′(−2,1)
, B′(−1,3)
, and C′(−6,3)
.
The vertices of triangle upper A prime upper B prime upper C prime are upper A prime left parenthesis negative 2 comma 1 right parenthesis , upper B prime left parenthesis negative 1 comma 3 right parenthesis , and upper C prime left parenthesis negative 6 comma 3 right parenthesis .

The vertices of triangle A′B′C′
are A′(−2,−1)
, B′(−6,−3)
, and C′(−1,−3)
.
The vertices of triangle upper A prime upper B prime upper C prime are upper A prime left parenthesis negative 2 comma negative 1 right parenthesis , upper B prime left parenthesis negative 6 comma negative 3 right parenthesis , and upper C prime left parenthesis negative 1 comma negative 3 right parenthesis .

The vertices of triangle A′B′C′
are A′(−2,1)
, B′(−6,3)
, and C′(−1,3)
.
The vertices of triangle upper A prime upper B prime upper C prime are upper A prime left parenthesis negative 2 comma 1 right parenthesis , upper B prime left parenthesis negative 6 comma 3 right parenthesis , and upper C prime left parenthesis negative 1 comma 3 right parenthesis .

The vertices of triangle A′B′C′
are A′(2,1)
, B′(6,3)
, and C′(1,3)
.
The vertices of triangle upper A prime upper B prime upper C prime are upper A prime left parenthesis 2 comma 1 right parenthesis , upper B prime left parenthesis 6 comma 3 right parenthesis , and upper C prime left parenthesis 1 comma 3 right parenthesis .
Skip to navigation

1 answer

To find the vertices of triangle \( A'B'C' \) after reflecting triangle \( ABC \) first over the x-axis and then over the y-axis, we can follow these steps:

  1. Reflection over the x-axis:

    • The reflection of a point \( (x, y) \) over the x-axis is \( (x, -y) \).

    Applying this to the vertices:

    • \( A(2, -1) \) reflects to \( A'(2, 1) \)
    • \( B(6, -3) \) reflects to \( B'(6, 3) \)
    • \( C(1, -3) \) reflects to \( C'(1, 3) \)
  2. Reflection over the y-axis:

    • The reflection of a point \( (x, y) \) over the y-axis is \( (-x, y) \).

    Applying this to the reflected points:

    • \( A'(2, 1) \) reflects to \( A''(-2, 1) \)
    • \( B'(6, 3) \) reflects to \( B''(-6, 3) \)
    • \( C'(1, 3) \) reflects to \( C''(-1, 3) \)

Thus, the vertices of triangle \( A'B'C' \) after both reflections are:

  • \( A'(-2, 1) \)
  • \( B'(-6, 3) \)
  • \( C'(-1, 3) \)

The correct response is:

The vertices of triangle A′B′C′ are A′(−2, 1), B′(−6, 3), and C′(−1, 3).